SODA

Hot Packets: A Systematic Evaluation of the Effect of Temperature on Low Power Wireless Transceivers

Boano, Carlo Alberto and Wennerström, Hjalmar and Zuniga, Marco and Brown, James and Keppitiyagama, Chamath and Oppermann, Felix and Roedig, Utz and Norden, Lars-Åke and Voigt, Thiemo and Römer, Kay (2013) Hot Packets: A Systematic Evaluation of the Effect of Temperature on Low Power Wireless Transceivers. In: IEEE ExtremeCom 2013.

[img]
Preview
PDF (Hot Packets: A Systematic Evaluation of the Effect of Temperature on Low Power Wireless Transceivers) - Published Version
1423Kb

Abstract

Temperature is known to have a significant effect on the performance of radio transceivers: the higher the temper- ature, the lower the quality of links. Analysing this effect is particularly important in sensor networks because several applications are exposed to harsh environmental conditions. Daily or hourly changes in temperature can dramatically reduce the throughput, increase the delay, or even lead to network partitions. A few studies have quantified the impact of temperature on low-power wireless links, but only for a limited temperature range and on a single radio transceiver. Building on top of these preliminary observations, we de- sign a low-cost experimental infrastructure to vary the on- board temperature of sensor nodes in a repeatable fashion, and we study systematically the impact of temperature on various sensornet platforms. We show that temperature af- fects transmitting and receiving nodes differently, and that all platforms follow a similar trend that can be captured in a simple first-order model. This work represents an ini- tial stepping stone aimed at predicting the performance of a network considering the particular temperature profile of a given environment.

Item Type:Conference or Workshop Item (Paper)
ID Code:5619
Deposited By:Chamath Keppitiyagama
Deposited On:21 Jan 2014 10:23
Last Modified:15 Jan 2015 14:18

Repository Staff Only: item control page