Explaining Probabilistic Fault Diagnosis and Classification using Case-based Reasoning

Olsson, Tomas and Gillblad, Daniel and Funk, Peter and Xiong, Ning (2014) Explaining Probabilistic Fault Diagnosis and Classification using Case-based Reasoning. In: 22nd International Conference on Case-Based Reasoning. (In Press)

Full text not available from this repository.

Official URL:


This paper describes a generic framework for explaining the prediction of a probabilistic classifier using preceding cases. Within the framework, we derive similarity metrics that relate the similarity between two cases to a probability model and propose a novel case-based approach to justifying a classification using the local accuracy of the most similar cases as a confidence measure. As a basis for deriving similarity metrics, we define similarity in terms of the principle of interchangeability that two cases are considered similar or identical if two probability distributions, derived from excluding either one or the other case in the case base, are identical. Thereafter, we evaluate the proposed approach for explaining the probabilistic classification of faults by logistic regression. We show that with the proposed approach, it is possible to find cases for which the used classifier accuracy is very low and uncertain, even though the predicted class has high probability.

Item Type:Conference or Workshop Item (Paper)
ID Code:5704
Deposited By:Tomas Olsson
Deposited On:25 Aug 2014 13:34
Last Modified:25 Aug 2014 13:34

Repository Staff Only: item control page