Systems-of-systems for border-crossing innovation in the digitized society - A strategic research and innovation agenda for Sweden

Axelsson, Jakob (2015) Systems-of-systems for border-crossing innovation in the digitized society - A strategic research and innovation agenda for Sweden. [SICS Report]



This report constitutes a strategic research and innovation agenda for the area systems-of-systems. The agenda has been developed during the first half of 2015 in a project led by SICS Swedish ICT AB, in collaboration with INCOSE Sweden and a large number of representatives from industry and academia, with financial support from Vinnova. The overall conclusion of the agenda is: Sweden needs a world-leading capability to rapidly develop trustworthy systems-of-systems. A system-of-systems (SoS) can informally be defined as a group of independent collaborating systems. The elements of an SoS, called constituent systems, retain an operational and managerial independence, but when combined in a certain way, they provide together a new capability that is emergent from their cooperation. There are many applications of SoS, often as a consequence of the digitization of society which opens new possibilities for system integration. Examples can be found within command and control systems for defense and civilian crisis management; construction and mining; manufacturing and the reindustrialization; transportation; and health care. System integration is traditionally a Swedish area of strength, and by improving SoS knowledge, competitive advantages can be reached. SoS is also an important enabler for innovation, through the ability to combine existing technical products, processes, and organizations in new ways. Having the ability for rapid SoS development is very important for businesses to bring new innovations to market. However, to advance the practice of SoS engineering, a number of challenges need to be addressed, including improving the theoretical foundations; the socio-technical aspects; architecture; modeling and simulation; interoperability; trust; business and legal aspects; development processes and methods; and standardization. As part of the agenda project, a survey has been done of international and Swedish research in the area. Internationally, the SoS field is dominated by US researchers, with a very strong focus on military and space applications. A large number of people are involved, but few persons focus on the area. In comparison, Sweden has entered the research area much later, and only now is attention growing. As is the case internationally, few researchers focus on SoS, and many of them do not even call their research SoS. Activities are scattered over many organizations throughout the country. Many of the researchers in SoS in Sweden come from a background in Software Engineering or Control Engineering, and this is in contrast with the international research, which has its basis in Systems Engineering. In Sweden, research topics such as business aspects (in particular innovation), control systems, governance, and Internet of Things are more pronounced than internationally. However, there is little research in Sweden on the underlying, fundamental principles of SoS engineering. This is likely to be in part a consequence of the funding strategies currently implemented. The analysis shows a broad but scattered Swedish research community lacking critical mass. There is a high competence in software and control engineering, and in empirical research methods, but the lack of systems engineering competence is alarming, since it is fundamental for desired advances, such as in the reindustrialization (Industry 4.0). To achieve the desired capability in SoS development requires knowledge, competence, and capacity, which are provided through substantially increased research and education actions. It is suggested that research in the area is organized as a national SoS center-of-centers that coordinates activities at different academic member organizations. This requires increased research funding. There is also an urgent need for education in systems engineering, systems thinking, and SoS. It is proposed that the center-of-centers also takes responsibility for this, by developing joint courses in those disciplines, including on-line courses for practitioners, and PhD schools for industrial and academic doctoral students. To complement this, societal actions are needed to remove obstacles for building SoS, and enforcing standards. Finally, it is necessary to create meeting places, including triple helix flagship projects, that can fuel the interactions between individuals and organizations interested in SoS.

Item Type:SICS Report
ID Code:5863
Deposited By:Vicki Carleson
Deposited On:06 Jul 2015 15:03
Last Modified:06 Jul 2015 15:03

Repository Staff Only: item control page