A Token-Based MAC Protocol for Achieving High Reliability in VANET

Ali Balador (Ph.D.)
Postdoctoral Research Fellow
SICS Swedish ICT Västerås AB
ali.balador@sics.se -- +46 730532133

BMW Summer School 2016
Bavaria, Germany, July 18-23

Goals
- Address the short-comings of IEEE 802.11p
- Support the strict requirements on timing and reliability
- Using standardized 802.11-based hardwares

Background
- CAM (Cooperative Awareness Messages) or beacon [1]
 - Short, periodic status messages (2-10 times per second)
 - Broadcasted by every car
 - No multi-hop intended (so far)
 - Include: position, speed, direction, other status information (e.g. blinker status)
- DENM (Decentralized Environmental Notification Message) [2]
 - Event-based warning message
 - Broadcasted only during specific event
 - Broadcast stops when event is over
 - No multi-hop intended (so far)
 - Include: position, speed, direction, other status information (e.g. blinker status)

Protocol Description
1. Ring establishment and maintenance
2. Data age list generation
 - Each vehicle maintains a data age list logging the age of the latest successfully received beacon from individual nodes.
 - Next token holder is the node with the highest data age on the current token holder’s list.
3. Token Passing
 - Token is circulated with beacon packets
 - Whoever holds the token has unique right to access the channel
 - Each token holder is responsible for the choice of the next token holder
4. Transmission order

Highway Scenario
- Metrics
 - Channel utilization
 - Beacon Delivery Ratio (BDR)

Propose an alternative solution specially for high densities when IEEE 802.11p is not able to handle a high number of beacons.

The way DTB-MAC uses the token passing not only does not produce more delay, but also improve it for some network densities.

Conclusions
- Support for delay-sensitive data traffic through deterministic channel access is needed
 - In the current standard this support is compromised due to the properties of IEEE 802.11p MAC
- A distributed, token-based MAC method supports reliable beacon broadcast before a given deadline
 - Prioritizing vehicle that is in most need to communicate to keep its deadline.
 - Built-in retransmission opportunities (if bandwidth available)

Simulation Settings
- Beacon Send Rate: 10 packet/s
- Beacon size: 500 Bytes
- Data Rate: 6 Mbps
- Transmission Range: 500 m
- Simulation time: 300 s
- Simulation package: Veins

Simulation Scenarios
- Highway Scenario
 - 2.2 km highway with 2 lanes

Urban Scenario
- Downtown of Milan
- 2.6°2.6 km²

References

Acknowledgements
This work was partially supported by SICS Swedish ICT Västerås AB through the EU-project, SAFECOP. Moreover, Balador is funded by ERCIM Alain Bensoussan postdoctoral Fellowship.